No-Code Programming for **Biology**

Morning Session

09:00 Welcome & Lesson 1: Introduction

An introduction to us, the grove board, microcontrollers and the XOD IDE

10:00 Break

10:30 Lessons 2 & 3: Getting Started & Explore XOD

Get started with using your board. We'll start with some simple tasks like flashing an LED, pressing a button and sounding a buzzer

Get to grips with some of the most useful nodes in XOD

12:00 Lunch

Before we Start

- 1 Downloaded the XOD Software www.xod.io
- 2 Downloaded the No-Code Programming Beginner's Guide <u>www.biomaker.org/nocode-programming-for-biology-handbook</u>
- **3** Installed USB Drivers (if required)

www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

A0-A6 Analog

D0-D13 Digital

I2C I2C (require address)

PIN	DEVICE
AO	Rotary Potentiometer
A2	Sound Sensor
A6	Light Sensor
D3	Temperature and Humidity Sensor
D4	LED
D5	Buzzer
D6	Button
I2C (19h)	Three-Axis Accelerator
I2C (77h)	Air Pressure Sensor
I2C (3Ch)	OLED Screen

_ _

2 Project Browser: Buttons

II ţ

- 2 Project Browser: Buttons
- 3 ProjectBrowser:ProjectPatches

2 🤉 2 oject Browser 🕒 🂵 🏹 🚍 3 002-simulate Welcome to XOD, Maker! 003-inspector program. It's called a **patch**. Patches are like awgrover/conversions 1 bradzilla84/neopixel Several related patches form a project. bradzilla84/visi-genie-extra-library -• Cesars/0-all-examples Exercise count 👖 cesars/i2c-scanner 84 name. The list is called a Project Browser watch 👆 Web hints TICK 1 歳 030 ∧

II ţ

__

- 2 Project Browser: Buttons
- 3 ProjectBrowser:ProjectPatches
- 4 Project Browser: Libraries

II ţ

--

- 2 Project Browser: Buttons
- 3 ProjectBrowser:ProjectPatches
- 4 Project Browser: Libraries

1 Your Patch

5 Inspector

__

- 2 Project Browser: Buttons
- 3 ProjectBrowser:ProjectPatches
- 4 Project Browser: Libraries

1 Your Patch

Quick Help

6

- 2 Project Browser: Buttons
- 3 ProjectBrowser:ProjectPatches
- 4 Project Browser: Libraries

1 Your Patch

5 Inspector

Add New Patch Library

- Project 2 Browser: **Buttons**
- Project 3 Browser: Project Patches
- Project 4 Browser: Libraries

1 Your Patch

Quick Help

Inspector 5

Nodes

Pins

Links

Pulse

Boolean

Pins

Port

Break 30min

Try it Yourself – 20min

- 1 Work in small groups (introduce yourselves if necessary)
- 2 Complete Task 1
- **3** Step-by-step instructions are in the Guide (p20-25)
- 4 Ask if you need help

Try it Yourself – 20min

- 1 Work through Task 2 in groups
- 2 Step-by-step instructions are in the Guide (p26-29)
- 3 Ask if you need help

Congratulations!

You can now programme an Arduino Board!

Tweak and Watch Nodes

Flip, Clock and Count Nodes

Concat, Join and Format-Number Nodes

Lunch 60min

Afternoon Session

13:00 Lesson 4: Building Devices

Learn how to make more complex programmes in XOD using logic nodes, sequences and loops.

- 15:00 Break
- 15:30 Lesson 5: Next Steps

Learn how to expand your programming and hardware building capabilities to start building your own devices, and take a look at some previous projects.

16:25 Round-Up

Creating New Nodes

Try it Yourself – 15min

- 1 Work though Task 6 in groups
- 2 Step-by-step instructions are in the Guide (p50-54)
- 3 Ask if you need help

Try it Yourself – 5min

- Modify your write-text-to-oled node so that the ssd1306-oled-i2c-device DEV pin is linked to each of the other DEV pins by a bus rather than by links.
- 2 There is an example of this on p57 of the guide.
- 3 Ask if you need help

(Task 7 of the guide provides another task to practice this if you have time)

Try it Yourself – 20min

- 1 Work though Task 8 in groups
- 2 Step-by-step instructions are in the Guide (p60-63)
- 3 Ask if you need help

Sequences and Loops

Try it Yourself – 20min

- 1 Work though Task 9 in groups
- 2 Step-by-step instructions are in the Guide (p64-70)
- 3 Ask if you need help

Break 30min

Case Studies

eCO-SENSE: Soil Sensors Powered by Plant Photosynthesis

Camera for Monitoring Plant Pollination Events

Behavioural Chamber to Evaluate Rodent Forelimb Grasping

Open Source Microbial Bioreactor

www.hackster.io/biomaker

Discussion – 15min

- 1 Read through the case studies (**p80-83**)
- **2** Discuss in groups
- **3** Which of this devices is most relevant to your research?
- 4 What extra hardware or programming skills would you need to create one of these devices?

Sector State St

Expanding Your Capacity

Wires

Shields

Breakout Boards

Plug-and-Play Components

<u>www.seeedstudio.com</u> <u>> Shop > Grove</u> <u>www.m5stack.com</u> <u>> Store > Unit</u>

Plug directly into white sockets on the board <u>open-smart</u> .aliexpress.com

Plug into Open Smart Expansion Shield (or use JST PH to JST XH cables) <u>www.adafruit.com</u> <u>> Products ></u> <u>STEMMA/STEMMA QT</u>

Plug directly (STEMMA 4 pin) Plug with JST PH to JST SH cable (STEMMA QT 4 pin)

Wired Breakout Boards

<u>open-smart</u>	
.aliexpress.com	

www.adafruit.com

www.adafruit.com

Connect using expansion shield or Grove-to-female wires (make sure pin labels match up)

Solder pins to board. Connect using Grove-to-female wires (make sure pin labels match up)

Finding XOD Nodes

Search using 'reference designator' e.g. BMP280 (barometer) or SSD1306 (OLED screen)

www.xod.io/libs

forum.xod.io

	 Documentation 	Libraries	Community 🝷	*)
Libra	ries			Cont. buill a data d
LIDIAI				Sort by Opdated +
BMP280	0			Search
	emiliosancheza/b	ome280-ser	nsor@1.0.1 ed on Wayland BMP280	l-barometer
	2020-09-18			
6	wayland/bmp280)-baromete	r@0.0.1	
	BMP280 barometric p https://github.com/ada	ressure and ten afruit/Adafruit_	mperature sensor. Wrap _BMP280_Library. Datas	s heet: https://ae-
	bst.resource.bosch.com	n/media/_tech/	/media/datasheets/BST-	BMP280-DS001.pdf
	2020-05-16			
Arduino IDE

Arduino provides it's own free IDE software, which uses C++ coding language to programme the board. <u>www.arduino.cc/en/software</u>

Blink Arduino 1.8.5	
	ø
Blink §	•
This example code is in the public domain.	
http://www.arduino.cc/en/Tutorial/Blink */	
<pre>// the setup function runs once when you press reset or power the board void setup() { // initialize digital pin LED_BUILTIN as an output. pinMode(LED_BUILTIN, OUTPUT); }</pre>	
<pre>// the loop function runs over and over again forever void loop() {\$ digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second }</pre>	
32 Arduino/Genuino Uno on C	ом1 🌈

Converting Arduino libraries for use in XOD <u>bit.ly/arduino-to-xod</u>

Combining XOD and Arduino IDE XOD menu > Deploy > 'Show Code for Arduino'

More complex programming <u>www.arduino.cc/en/Tutorial/HomePage</u>

Discussion – 20min

- 1 What instruments would be useful in your own research?
- **2** How would you go about building such a device?
- **3** What additional hardware/programming would you need?
- 4 Do some research has something like this already been done? Can you find the things you need?

Questions? Contact the Biomaker team: coordinator@synbio.cam.ac.uk

Thank You

More info: www.biomaker.org

